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Dimension Spectrum of Axiom A Diffeomorphisms.
I. The Bowen—Margulis Measure

Dominique Simpelaere'
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We compute the dimension spectrum f{«) of the singularity sets of the Bowen—
Margulis measure defined on a two-dimensional compact manifold and
invariant with respect to a C2? Axiom A diffeomorphism. It is proved that [ is
the Legendre-Fenchel transform of a free energy function which is real analytic
(linear in the degenerate case). The function f is also real analytic on its defini-
tion domain (defined in one point in the degenerate case) and is related to the
Hausdorff dimensions of Gibbs measures singular with respect to each other
and whose supports are the singularity sets, and we decompose these sets.

KEY WORDS: Multifractal; thermodynamic formalism; Hausdorfl dimen-
sion; free energy function; large deviations; Gibbs measures.

INTRODUCTION

Let (X, u, g) be a dynamical system, where X is a metric compact space,
g a transformation onto X, and u a g-invariant measure on X. Multifractal
analysis is concerned with the decay rates of the measures u(U) where |U|
goes to 0 (|U| denotes the diameter). To this purpose we define the maps

=~ Log u(U) . Log u(U)
at(x)= hm —2H) d o (x)= lm 2
= I Togiop 20 o= lm o OD
U] -0 [Ul—o0

which lead to the definition of the singularities of the measure u in one
point: when we have ot (x)=a (x)=oa(x), then a(x) represents a local
dimension [y has pointwise dimension a(x)] and we write u(U)~ |U|*™.
This notion was ‘introduced by Frostman in potential theory with the
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capacities, and we can develop further this study for invariant measures of
dynamical systems.
Some theoretical physicists'”’ have found relevant information in the
singularity sets
Cr={x/a*(x)=al}, C; ={xfa"(x)=0a}, C,=CnC; (02)

x

and using thermodynamic formalism, they obtain results about local
singularities of a measure. Most of them concern expanding hyperbolic
dynamical systems when g is C2 (or C'*%) and g'>y>1: dim X=1
(X=[0;1]or §"),>' and dim X=2 (X =[0; 1 ]? or T)""*?* when u has
nonzero Lyapunov exponents. There also exist results for local singularities
for a class of random measures (multiplicative chaos) obtained by random
iterated multiplications.*® They correspond to a rigorous study of the
phase transition of a system with random interactions.

When the measure yu is ergodic, then there exists a real a >0 such that

a(x)=0o p-ae. and =1

It is then interesting to study the singularity sets (0.2) when they are not
empty when a* and a~ take different values. We then obtain fractals, and
in order to recognize them, we define the dimension spectrum function

S(a):
fla)=HD(CZ) and = —oo when the sets are empty  (0.3)

Using large-deviations results, it is easy to prove the inequality HD(CZ) <
Sla). To prove the reverse inequality, HD(CZX)= f(a), we apply a
Frostman’s lemma to a measure constructed on a set V,c C, (this con-
struction 1s recursive and depends on several appropriate sequences).

Under suitable assumptions this function f is the Legendre-Fenchel
transform of a free energy function F concave and C'

Sla)=inf {ra— F(1)} (0.4)
teR
where F is defined from a sequence of partition functions (Z,), .,

VBeR, F(B)= lim —%LogZ,,(,B) (0.5)

with
Z(p)= Y wU)*

e ll,
mtH>0
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where (U,),», is a partition whose diameter tends to 0 when » tends to
+ 0.

The Model

We take X to be a compact manifold of dimension 2 (for example, the
torus T) and g is a C? Axiom A diffeomorphism. The g-invariant measure
u is the Bowen—Margulis measure, the one that realizes the maximum of
topological entropy. See also ref 16, where an analogous example is
treated.

In order to prove our main result

Sla)=HD(C,) for ael[o,;a,]JcR** and f= —oo otherwise

and f is real analytic on Ja,;a,[ (in the degenerate case o, = a,), we are
going to prove the existence with explicit formulas, the regularity, and
some other properties of a free energy function F related to the dimension
spectrum f as in (0.4).

1. DEFINITIONS, NOTATIONS, AND PRELIMINARIES

The tangent space to X can be written

Ty=|J T, (tangentspace at the point x)

XEX

and we represent the differential map of g at x by Dg.: T, —> Ty,

Definition 1.1. A set I" is said to be hyperbolic if ! 8%

» ["is closed and g(I')=1T".
« Vxel, T,=E\@®E", with Dg(E})=FE*

g(x)

and Dg(E*)=E*

;(.\')'
e 3c>0 and i€ ]0; 1[ such that for any integer n we have

V(v w)e EXXE, [Dg"(w)li<cA" vl and | Dg~"(w)l <ci" [wl|
e EY and E? vary continuously with x.
Definition 1.2. A point xe X is nonwandering if

weri, vo(U em) o

nzl

Let Q2=Q(g)={xeX/xnonwandering}. The set Q is closed,
g-invariant, and {xe X/x periodic} = Q.

822/76/5-6-16
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Definition 1.3. g is said to be Axiom A if and only if 2 is hyper-
bolic and {xe X/x periodic} =Q (g is Anosov if X is hyperbolic). We
define the sets which are the stable manifolds (respectively unstable) by

Wi(x)={yeX/d(g"(x), g"(y)) <& Vn=0} [resp.d(g "(x), g "(y))<¢e]
we have then
VyeX, dig'(x),g"(y))<A"d(x,y)
and therefore
Wix) = {ye X/d(g"(x), g"(»)) = 0} = W*(x)

Proposition 1.1. g contracts in the stable direction and expands in
the unstable direction.

Definition 1.4. The “canonical coordinates™
¥6>0, >0, VY(x,y)eQ? d(x, y)<e= Wi(x)nW5(y)=_[x;y]
define a unique point and a continuous map (the local product)
[5-10 {(x p)eQ%d(x, y)<e} > Q

Proposition 1.2. gl is expansive (of constant y).

Spectral Decomposition

We have Q={J%_, Q,, where the sets Q, are disjoint compact sets

i=1
satisfying g(;)=Q, and g, is topologically transitive.
Definition 1.5. The sets , are called basic sets.
Proposition 1.3. Any g-invariant measure has its support in Q.

In the particular case when g is an ergodic probability measure, its support
is included in a basic set.
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We introduce now Markov partitions to make an analogy with sym-
bolic dynamical systems.

Definition 1.6. Let 4 be a basic set. A Markov partition is a finite
cover U =(U;);—,.. . of A made of proper rectangles (R =int(R) and
¥(x, y)€ R% [x; y] € R) such that

o Int{(%) N int(%;) = & for i # .

o If xeint(%,) and g(x)eint(%;), then we have

Weg(x), %) g(W"(x, %)) and  g(W'(x,U))< W(g(x), %)
with W*(x, %)= W*(x) " U,.

We can make Markov partitions of arbitrary small diameter (in
particular <y). We associate to this partition the transition matrix A
defined by

1 if int(%)ng~'(int(%))# &
Ay= 0  otherwise

which is irreducible [V(/, /), 3n such that (4”);>0].
We define now the subshift of finite type associated to the matrix A:

Zu={xe{l,.,m}%/4 =1}

NpXpal

f
t
Ei={xe{l,.,m™A, . =1} (resp.Z])
On the compact set X', we define a metric

A i k=sup{|il: x;=y,, Vi,0< |i| <k}

d(zc,_y)={0 i x=y

and the shift o: 6(x) =y, where ¥n>0, y,=x,,,.
We can define a continuous surjection (Lipschitz)

nmX,—~A

x> () g u,)
jeZ
satisfying Vne Z, noo” = g"on.
The map 7 represents a code of the orbits of points of A; moreover,
n is bijective on A\, z g ~/(0°% L 3“U), where

OU={xeWU/x¢int{ W(x, %)}
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and W¥(x, )= W¥x)n U with |%| <e The measure of the set
Ujez 8 (0°U L 0“) is 0 by ||-|| and by any Gibbs measure.''®’

Definition 1.7. M(A) is the set of probability measures defined on
A and M(A) is the set of g-invariant probability measures defined on A.

Definition 1.8. C(A) represents the set of real, continuous func-
tions defined on 4, and the set C°(A)<= C(A) represents those which are
J-Holder continuous.

Definition 1.9. The pressure of a function ¢ € C%(A4) is the real

P,=P,(¢)= sup [hp+f¢dp} [=P,(gom)]

pEMy(A)

and the unique measure u, which achieves this supremum is the Gibbs
measure of ¢. To this measure u, we associate the measure e M, (Z,)
such that u,=n*¢. We have then h (c)=h,(g) and the measure £ is the
Gibbs measure of ¢one C%(Z,). The map m: (A4, uy)—(Z 4, &) is an
isomorphism of dynamical systems.'' '8’

We decompose now the Bowen—Margulis measure u (which is the
Gibbs measure of 0) defined on the basic set 4 < X. Let & be the entropy
of u

h= sup h,>0

pEMg(A)

We apply the Perron—Frobenius theorem to the matrices A and ‘A. There
exist eigenvectors « and v and a real ¢(=e")> 1 such that
Au=¢@u and ‘Av=¢@v with Vie[l;m], wv,>0 and ) wyv,=1

i=1
We determine a measure v as follows:

- v V- tp—k)
for k<p, WXEZ /X, = Yhrn X, =¥, =0 " 0 u,

It is easy to see that (o, v) is a Markov chain over X', which satisfies the
relations

h{c)=Logo=h=h,[g)

and then we have

u=m*v

We have, for example,

vie[l;m], vixeZ, /xo=i}=uu,.
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We define also v* (resp. v~ ) on 2’7 (resp. £, ) on the cylinders for k>0
by
v {xeZ}/Xo= Yo Xx=Yi} =0 Fu,

(1.1)

[resp. v {Xx€Z /X_4=V_iruXo=Yo} =0 "v,_]
We verify that
avﬁ{éi}/-*ns_vo.n=)‘n} =¢ V|T§EZ:/-‘U=.VI}
[resp. 0_WIE;EZ}/A‘-[=_v_|.xo=.vo}=‘p—]vl_{sefjlvvo=.r-|)]

We associate to the measure v*(resp. v~ ) a measure u“ (resp. u*) defined
on the unstable manifolds W* (resp. stable W*). One proves that
locally'® 2

p=ptxpt (1.2)

Consider now the dynamical partition (or Markovian partition) which
is obtained by iterations of the Markov partition % = (%);.,._. and
defined by

n—1
P=U and P=\ gIR) (13)
Jf=t—-n
Consider also the unstable dynamical partition &% and the stable one &3
with
Z,=12,2.] (1.4)

n?*

We associate to an element U of 22, the element y(U)e U such that
" (D) =1(g") (y(UNI- Ul =1 (15)

Here and throughout this paper, the sign =~ expresses that the ratios of
both sides are uniformly bounded by constants ¢ and ¢~'. We have similar
properties for elements of 2, and we have, following (1.1), for Ue 2% and
Ve,

n*

AU = po(V)y=e™ (1.6)

since U and V are associated under n with cylinders of size » in, respectively,
Z* and X3 and centered in, respectively, = ~'(»(U)) and n~'(p(V)). It
is easy to see that there exist two positive reals 1 <a < b such that for any
UeZ; and Vel

b"<|U |VI<a™" (1.7)
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Let us note for xe 4

J¥(x)= —Log Jacobian Dg: E, — E¢ ., (18)
[resp. J°(x)=LogJacobian Dg: E} — E3, )] ’
The functions J* and J* are negative and §-Holder continuous func-
tions./"! Expression (1.5) becomes

n—1
J¥ 7 U ~|U
exp {j;o Lg/(¥( ))]} |U| (1.9)

(resp. exp {Z Jf[gf(y(V))]} ~ |V|)

We shall use (1.2) to decompose the free energy function F into
F“+ F* where F* (resp. F*) is an unstable free energy function (resp.
stable). Following ref. 2, if we take f as in (0.4), we prove that f is the
dimension spectrum of the measure u. This function f(a) is also related to
the Hausdorff dimensions of measures u, whose supports are the
singularity sets C,. We decompose the sets C, into the local product of
singularity sets of u* and u*: C,> [C,.; C,s], and these two sets have the
same Hausdorff dimensions.

The first step is to introduce the free energy function and to compute
it

2. EXISTENCE AND REGULARITY OF THE FREE ENERGY
FUNCTION

We shall see that the existence is very much harder to prove than the
regularity. For the existence we resolve this two-dimensional problem into
a one-dimensional problem by decomposing the free energy function F
into the sum of an unstable free energy function F* and a stable free energy
function F*. This is done in the next section.

2.1. Decomposition of the Free Energy Function

Each unstable manifold intersects A4 in a countable union of sets of
type Wi .(x), and intersects transversally all the stable manifolds. The
metrics on W7} (x)n A, which is compact, as a Riemannian submanifold,
and the one inducted as the restriction of ||-|| are Lipschitz equivalent.
Then the choice of the metric does not matter in the following. We shall
use, for example, uniform partitions (U¥),., [resp.(U;}),»,] on the
unstable (resp. stable) manifolds of diameter ~e~". We define then the
local product U,=[U%; U3 ].
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Wiae (%)

{7

Whae(x)

We define also the real functions as in (0.5) for any real

F:(ﬁ)=—%Log{ Y ,u“(U)”} [resp. Fi(B)for Ve Us] (2.1.1)

Ue U,
We have at the rank # with W= [U, V]

F.(B)= —% Log{ Y u(W)f’} (2.1.2)

Wel,

Using (1.2), we have locally
u(W) = p"(U) g(V)
and (2.1.2) becomes
F(BY=Fy(B)+ F,(B)+u,(B) (2.1.3)

where u,(f) represents parasite terms which disappear at the limit (with
I/n Log) when n goes to +oco. It suffices therefore to show that the
sequence of functions (F%), ., [resp. (F?),.,] converges to a function F*
{resp. £*) to obtain

VBeR, lim F,(B)=F(B)=F“(B)+F(p) (2.14)

n— +o

We compute then in the next section the functions F* and F* in order
to obtain F.

2.2. Computation of the Free Energy Function
The unstable free energy function is given by the following,
Theorem 2.2.1. We have for any real

w gy h,— fBh
F (ﬂ)—pelltl:ll{(/i) [Il"dp]

Observe that there is nothing to prove for g =1, since we have for any
partition (UY),.,, F¥(1)=0, and then both quantities are 0. Observe also
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that the functional involved in the theorem satisfies the following result (or
its opposite if we take — F¥).

Proposition 2.2.2. We have for any real f8

sup I(p)= sup I(p)

pe M) peMA)
p ergodic
where
h,— Bh
1 =t =
(p) j‘ Ju dp

Proof of Proposition 2.2.2. The map p — I(p) is upper semicon-
tinuous since the dynamical system expands (ref. 4, 16.7, p. 107). The
ergodic measures are extremal and form a G; in M, (A)—this property
comes from the specification in ref. 4, 21.9, p. 198. The supremum is then
equal over the two sets, and it is achieved since M (A4) is compact. ||

Remarks. The functional / is a large-deviations functional.

+ As proved with regard to Theorem 2.4.1, this supremum is achieved
by a unique measure uj which is the Gibbs measure of the Holder con-
tinuous function —hf — F“(f)J".

e We have for f>1, Ve M (A1), I({)<0, and for f=1, VEF#uf,
I(¢)<0.

Theorem 2.2.1 will follow directly from Lemmas 2.2.3 and 2.2.5. We
first estimate an upper bound of the upper limit with the following.

Lemma 2.2.3. We have for any real

im —FYB)< sup I(p)

n— +x peMg(A)

Proof of Lemma 2.2.3. Let BeR and (U}),., be a uniform
unstable partition such that for any Ue U}, we have |U| ~e~". Using (1.6)
and (1.9), we associate to any interval Ue U¥ an integer n(U) and an
element y(U)e U such that

nUy—1

|g"VY(U)I = U] exp{ LTl U))]l““

.I—
or in another form

muUy—1

Y I pUNI~—n (2.2.1)

=0
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and the u* measure of U satisfies
p(U) = e o (2.2.2)
It suffices to see that if
wU)=n((y;);»:) and C}l={xeZ}/x,;=y,0<i<gk} for k>0
and p = inf{k/AC} cn~'(U)} 2 n(U), then we have
pi(g"(U) =1 xv*(a”(C)) and p'(U)=e " =y*(Cry~e "

[#(U) represents the “size” of U and ¢ ™" its length]. We have therefore by
{2.2.2)

1
—Ffi(/f)=—10g{ Y #"(U)”}
n Uel,
and this leads to
1
_F:;(ﬁ)“'—Log{ Z e—n(U)ﬂ"} (2.2.3)
n UeUz

Let us define the sets
E;={UeU,/n(U)=1i} (2.2.4)

which are only defined for integers { varying in a linear scale, since, using
(2.2.1),

i | = [nayina,]
€ sup —J* inf —J“ = Ly

There exists therefore an integer i(n) such that for any integer / we have
#Ei e—iﬂh s #Eiln)e_i(”)ﬂh
and then

— ¥ ' —n(U) ph —itn) B
#E e M N e (g, —a)n # E, e
Ue Ul

and (2.2.3) becomes

1 —i(n) il
‘—‘F:(ﬂ)"';LOg #Ei(n)e ol
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or
1 i(n
—Fi:(ﬂ)~; Log #E.-(n)—% Bh (2.2.5)
Let us define the probability measures
1 1 itn)— 1
611 = 6‘. and é" = jon
#E,, UEZEM, ) i(n) EO £

The sequences

1 |
“Log #Eel01],  elaial,  &eM)

take their values in compact sets. We can suppose, if necessary by reindexing
the sequences, that these sequences converge:

1
;LOg #E;,,~»ve[0;1]

%—)—»ne[a,;az] (2.2.6)

g, ¢ (observe that the limit is g-invariant)

We get therefore
—Fy(B)—y—nph (22.7)

Let us compute the integral

[ 7 de = {1 S rteton)]

#E:ln) Ue Ein I(") j=0
Using (2.2.1) and (2.2.4), we have for any Ue E

in)

itn) — 1

1 —n
R Ju i -
o IZO L' WD~ s

and then

f e~

We get therefore
i(n) _ 1

lim —=p

= 2.8
n—~+x N j—J“dé (2 )
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Now we estimate the number y by a standard argument due to Misiurewicz
(ref. 4, p. 145) with the following result.

Proposition 2.2.4. We have

< 4
IST—sva

Proof of Proposition 2.2.4. Let (P) be a & continuous partition (for
example, the unstable dynamical partition) whose elements have diameter
0 < i. To obtain a lower estimate of the &-entropy of the partition (P), we
define the iterations

(PY=\/ g %(P)
k=0

and we compute for any integer M the number H, (P)". Let us recall that
each set E; is (i, 8)-separated'”’ (Vx # y), Ij <i, d(g’(x), g/(y)) > 8), since
the associated cylinder satisfies d(6/(x), 6/(y))> 4. The set E,,,, is therefore
(i(n), §)-separated, and we have for any Be(P)""~!, #{BnE,,}<l.
The classical computation of the entropy follows:

)

i(n) veEw #Eim

1 1 1
L =——L E,
og #Ei(n) l(n) Og # o

_—I—H(,(P)i("’_l =__1
i(n) ™

and taking the limit when n goes to + oo, we get with (2.2.6)

1 .
lim — H,(P)'"-1= (2.2.9)

n—+ax in) 7"

= =

For an integer M such that i(n)>2M, we define for integers
ge[0; M—1]

s(g)=Int (t(n)T—_q) and R,={0,1,.,9—-1,s(q) M +q,.,in)—1}

and we have # R, <2M. We obtain for ge [0; M — 1]

slq) =1

(PY"I=t="\/ g MM Pty \/ g="(P)

k=0 me R,
and we have then
sty)—1

Hg(PY'"~'< Y Ho[g *™ P ']+ #R,Log #P

k=0
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We verify that

itn) —~ 1 Hn)—1

Z 2/0, P) Z HB,,[g P)M_l]

j=0
M-—1 s(qg)—1

> ) Z Hy[g " 4P) '] (%)

¢=0

Y Ho g™ 4(P)"~'1> H,(PY")~' = #R, Log #P
>H, (P)"™~'—2M Log #P (%%)

The expressions (*) and (**) lead to

in)y—1

Y Hoo(P) "> MH,(P)" ' —2M?*Log #P (+%%)

Using the concavity of the function x - —x Log x, we get
iny—1

M1 L M~ *
H.(P) Zi(n) jgo H ip,(P) (k)

and we obtain by comparing (#%x*) and (s%*x)

2

M :
M-l —H,(P)"~!— L P 2.2.10
H.(P) i) 0,(P) ) og # ( )
Taking the limit in (2.2.10) when n goes to + o0, we obtain with (2.2.9)

1 ¥
—H(P)M '~ 2.2.11

i P) p ( )
Taking the limit in (2.2.11) when M goes to + o0, we get

he>

= =<

and comparing to (2.2.8) achieves Proposition 2.2.4. |J
Using Proposition 2.2.4 and (2.2.7), we get

—FyB)y—>y—nBh<I(C
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We have then proved a stronger result, which says that for any cluster point
F of the sequence (— F(f)),, there exists a g-invariant measure ¢ which
satisfies the inequality F< I(£), and that gives obviously Lemma 2.2.3. |

We prove now a sort of reverse inequality, since we estimate a lower
bound of the lower limit with the following result.

Lemma 2.2.5. We have for any real j

lim —Fy(B)=> sup I(p)
n— +x peMg(A)
p ergodic

Proof of Lemma 2.2.5. We consider a g-invariant ergodic measure
p. From the ergodic theorem we have on a set of p measure 1

1 in)—1
lim Z J ()] = jJ"dp (2.2.12)

n— 4+ x ( )

Using (2.2.1) and (2.2.12), the theorem of Shannon-McMillan (ref. 4,
p. 81), leads us to consider the intervals U of U such that

n
—=n
J‘_Ju t’l'p 4
since the measure p is concentrated on these elements. Let ¢ > 0 and the set

Ar={UeUi/n,—e<n(U)<n,+e}

There exists an integer N such that for any integer n>N we get
p(A})=1—¢ and

#A,>(1—¢)exp{n,(h,—¢)} (2.2.14)
and for any interval Ue A, we have
p(U) zexp{—n,(h,+e)hp}. (2.2.15)

From the definition (2.1.1) and the inequalities (2.2.14) and (2.2.15) we get

1
~Fi(p)>~ Log{ ) u"(U)f‘}?;Log # 47 exp{—n,(h, +.¢) hB)

Ue A,

and this leads to the inequality

— Bh—2¢

1' __Fu /_____
et (£)> f—Jdp+e
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Since the real ¢ is arbitrary we get

lim —F(B)=1(p)

n— ko
and since the measure p is arbitrary we get Lemma 2.2.5. ||

Using Proposition 2.2.2 and Lemma 2.2.5, we obtain finally
lim —F4B)> sup I(p)

n— +x peMg(A)

which, with Lemma 2.2.3, gives Theorem 2.2.1. |
We prove the following similar result for the stable free energy function.

Theorem 2.2.6. We have for any real f

ooy h,— ph
F(B)_pellﬂrllf(/ﬁli_‘.-]xdp]

The proof is analogous to the one of Theorem 2.2.1; it suffices to take
g~ ! instead of g (“unstable under g~' becomes stable under g"). We get
then

Jia=Js, Wy

loc

(v,g7")=Wi.(x g ad U

loc nog-

=U,

ng

Proposition 2.2.7. The functions F¥ F*, and F=F“+F° are
concave.

We are interested now in a more intrinsic free energy function (the
dynamical one) which is generated by the dynamical partition.

2.3. Computation of the Dynamical Free Energy Function

We define on R? the unstable (resp. stabie) dynamical free energy
function by

5 1 . .
Vix,y)eR’ Gux, ,V)=; Log{ Y pA) |A|~‘} [resp. G¥(x, ¥)]

AeP,
and the convergence of these sequences is treated in the following theorem.
Theorem 2.3.1. We have for any pair (x, y)e R?
lim Gix, v)=G"x, y)= sup [hp +j (vJ“—hx) dp]

n— + peMy(n)

lim Gi(x, ¥)=G*(x,v)= sup [h‘,+f(y.ls—hx)dp:|

N 4w pE My(A)
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The proof of Theorem 2.3.1 parallels the proof of Theorems 2.2.1
and 2.2.6; the major fact is that for any 4e€ %! and Be &) we have
p'(A) = p’(B)~e " and

n—1 n—1

o {T SN =ial and el SLeGEN]} =18
j=0 Jj=0

So it is easy to prove that, for example,

lim G¥x, v)< sup [/’;'+J(~"J"—h,\')dp:|

n— +x peE Mg(A)

An analogous counting argument to the one in Lemma 2.2.5 shows that

lim GYx y)> sup [h,,+j(y1"—hx)dp]

n— + o peEMg(A)
p ergodic

Since this functional is convex (and upper semicontinuous) and the ergodic
measures are extremal (and form a G;), we have

sup |:h‘,+j(yJ“—h.\‘) dp]= sup [/1,,+f()’f"—lz.r) dp]
peMKé{ﬂ peMgla)
p ergodic

Observe that G“(x, y) [resp. G'(x, y)] represents the pressure of
the Holder continuous function yJ*“—/hx (resp. yJ*—hx) and then the
supremum is achieved by a unique measure which is its Gibbs measure.
Moreover, these functions G* and G* are real analytic in both variables x
and y.'® This property will help us to prove the smoothness of the free
energy function F.

2.4. Regularity of the Free Energy Function F

The relation between F* and G* and F* and G° is derived from the
following.

Theorem 2.4.1. We have for any real
Gu(ﬂ’ —F"(ﬂ))= G.\‘(ﬁ, _F\(ﬁ))=0

Proof of Theorém 2.4.1. Let e R We have from Theorem 2.2.1 for
any g-invariant measure &

hg—hﬂ——F"(ﬂ)fJ"déso (24.1)



1346 Simpelaere

This leads us to the inequality
G“(B, —F"(pN <0

Since the function 7,=F“(f)J"—hf is Holder continuous, the pressure
(or G*) is achieved by a unique measure uy which is also the unique
measure which achieves F*(f8). The inequality (2.4.1) becomes an equality
only for ¢ = uj; and we have

G“(B, —F“(B))=P(r;)=0 (24.2)

By the same method we prove that G*(f, —F*(fB)) and F*(fB) are
achieved by a unique measure uj which is the Gibbs measure of the Holder
continuous function ;= F*(f)J*—hAp, and this gives Theorem 2.4.1. |

The smoothness of the function F" is given by the following result.
Theorem 2.4.2. The function F" is real analytic on R, is strictly

increasing, and is either linear (this is the case when J“ is homologous to
a constant, ie., J'=C+ Kog— K) or strictly concave.

Proof of Theorem 2.4.2. We differentiate (2.4.2) and we obtain for

any real f
aG” uyr aG“ u _
(55 ) - (5 |6 - Fpn =0

We get from(ll 14, 18)

aGu
(W)”j’ —FU(B) = [ du

and then we obtain

h

(F“y (ﬁ)=m>0
8

(24.3)
From a theorem of implicit functions and since (6G"/dy)( B, —F“(B)) <0

(and #0), the function F" is real analytic. Differentiating one more time
(2.4.2), we obtain

uy — L2 (aZG“/ﬁyZ) _ Fu
(F)" (B)=h [—(60"/6y)3](ﬂ’ F*(B))
hz aZGu
= 3 , —F* 244
(I Ju dll;)?( av_ >(ﬁ (ﬂ)) ( )
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62 u
(—G, ) >0
oy*
except for the case when J“=C+ K.g— K, which is the degenerate
case.!'® We have then in the general case

We have from!'# %

VeR, (F")"(B)<0
and this gives Theorem 2.4.2 |

We obviously have similar results for F*. We obtain then the following
result.

Proposition 2.4.3. The function F is real analytic on R, is strictly
increasing, and is either linear (this is the case when yu is absolutely con-
tinuous with respect to |-|) or strictly concave.

The case when F is degenerate is the case when J“ and J* are
homologous to constants (F* and F* are degenerate); the function J, the
logarithm of the Jacobian of g (=J*—J*), is also homologous to a con-
stant: J= C+ Kog — K. The measure u is then absolutely continuous with
respect to the Lebesgue measure, like the Gibbs measures p,. and u,. of
the type ke .|.

Let us define the Legendre-Fenchel transforms of F* F* and F
from (0.4): f, f*, and f. In the case when F is linear (resp. F* and F~) the
function f (resp. f* and f*) is only defined in one point:

F(ﬂ)=_Tlh(l~B) and f(ﬁ)

4

_t
—C

which is the degenerate case. In the general case f is defined and positive
on an interval Ju,; a,[ < R** (possibilities of limits at the boundaries) and
[= —oo otherwise (a <a,; and o> a,); f is also concave, and by a relation
of conjugacy we have®®’

S+ F(B)=af < a=F'(p) (2.4.5)
We have then for any real §
SF(BY)=BF(B)— F(B) (2.4.6}

which means that f'is real analytic on Ja,; a,[. The expression (2.4.5) leads
to

)+ F(By=af <= f=[f"(a) (24.7)

822/76/5-6-17
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Let us define «(0)= F'(0). We have then:
o fis strictly increasing on Ja,; a(0)[.

« fachieves its supremum at «(0).

« fis strictly decreasing on Ja(0); a,[.

e For ae Ja;;a,[ and f= f'(a) we have

1
f"(d)=m

and f is strictly concave.

We have of course similar results for /* and f*. In the next section we
relate the function f to the dimension spectrum of the measure y, i.e., to the
Hausdorff dimensions of the singularity sets of the measure .

3. COMPUTATION OF THE HAUSDORFF DIMENSIONS OF
THE SINGULARITY SETS OF THE MEASURE p

Let D, be the set of points x such that « is a cluster point of

Log u(R)
Log |R|

We have then the following result.

where xeint(R) and |[R|—0

Theorem 3.1. We have for any real e Jo,; a,[
HD(D,)=HD(C[)=HD(C;)=HD(C,)= f(x)
Proof of Theorem 3.1. We define the product partition U,=[U}; U’ ]

and the random variables (W,),, on U, by W, =Log u(U) and equipped
with the counting probability measure. Using (0.5), we have for any real

z
E(exp(SW,)) = #ﬂ)

and with Theorem 2.2.1 we obtain obviously

o1
lim -~ Log{E(exp(BW,))} = —F(B) -1
The sequence (W,),., satisfies a large-deviations theorem (ref. 5, 116.1).
For any real xe D, there exists a sequence (R,),, such that

Log u(R,)

x€int(R,), R 0 and
(R IRy 1= p-he Log IR

5
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For £>0 (such that o +¢€ Ja,; o[ ) and according to the large-deviations
theorem, there exists an integer N such that for any integer n> N we have

#{Ue Ut/u(U) 2 |U|***} <exp{n(f(a+¢)+¢)} (3.1)
Let m> N an integer and § = e~ " a positive real; for large integers p we get
|R,|<éc  and H(R,)=|R,|**?

and there exists an integer n(p)> m such that
] —n —-n
-e "< |R,|<ce
¢

We describe the general situation as follows:

We have then
MR, < p <U Qf,) <4sup u(Q;)
and also
sup #(Qi)>4-l#(Rp)>4—l |Rp|zx+s/2>c—a—e/24—-l lQﬁ,la+€/2> |Q:"|a+e
We have then the property
3, 1<i<4, w(Q@)=(0L**"

The element R, is contained in a ball of diameter ce =" and centered in Q.
Let the real 1> f(a+¢)+¢c We get with the definition of the Hausdorff
dimension
HDM, s(D,)= inf Y |P,|"< Y exp{n(f(a+e)+e)}(ce™")"
Dy P,

<UiPi 7
i nzm
1Pil<é -

since the number exp{n(f(a+:¢) +¢)} is greater than the number of
elements Ue U*¥ satisfying u(U) = |U|*** We find

HDM, s(D,)<c* ) exp{n(fla+e)+e—r1)} (3.2)

nzm
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which is a convergent series by our assumption. Since é goes to 0 when m
goes to + oo, we get

lim HDM, #D,)=0 (3.3)
5—0

This leads to the inequality
HD(D,) < f(a+¢€)+e
and since ¢ is arbitrary, we obtain

HD(D,) < f() (34)

We use Frostman’s lemma applied to an appropriate measure to prove
the reverse inequality. Let us recall that in ref. 2 one constructs recursively
a familly (R,),», of intervals depending on two sequences (r;);», and
(,);»1- The assumptions made on these two sequences allow us to define
two families of intervals (R}),., and (R;),,. Let us define the sequence
(Rp)p> 1

R,= [R:; R;]

and the set

The first step is to prove that
V,cC,=(C; nC;)cD,.

Then we define recursively a measure £ on R, satisfying ¢(R,)=1 and for
any ReR,

E(R)
#{HeR /HcCR')

S(R)=

where R’ is the only element of R,_, such that Rc R’ [&(-| R') is the
counting probability measure on R,]. The measure ¢ is the product of the
measures £ and &' obtained by the same method on the unstable and
stable manifolds and which satisfy Frostman’s lemma. The result can be
applied to & since we have

¢(B,)<C|B,|"™
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where f, is a ball of small diameter 6. We obtain therefore the inequality

HD(V,) = f(a) (3.5)
Since we have
V,cC,=(CnC)c(CrfuC)eD

x

we get following (3.4) and (3.5) a stronger result
HD(V,)=HD(C,)=HD(C})=HD(D,) = f(a)

and this gives Theorem 3.1. |

In the next section we study more precisely the function f, in particular
at the boundaries o, and a,.

4. PROOF OF THE DIMENSION SPECTRUM THEOREM

In the general case we obtain results which generalize those in dimen-
sion one''”’ and are given by the following,

Theorem 4.1. For any real a€ [a,;a,] there exists a g-invariant
measure u, such that

Log u(R)

f(a):HD(#“) and LOglRI m’d

U, ae.

Moreover, there exist positive reals v and » such that
[CyChleC,
and the Hausdorff dimensions of the two sets coincide.

Proof of Theorem 4.1. Let us first study the case a e Jo,; o,[.

Let feR such that 8= f'(«) [and by (2.4.5) and (2.4.7) we have
a=F'(B)], and define the reals a“= (F") (f) and o® = (F*)' (). We have
from (2.4.5)

a=o“+a* and  fla)=/"(a")+ () (4.1)

We shall relate f*(«*) and f*(«*) to the Hausdorff dimensions of the Gibbs
measures uj and up [See (2.4.2)]. The singularity sets of y* and u* are
denoted C¥ and C3.

Lemma 4.2. We have

uy(Ch)=1 and  f“(a*)= HD(uf)= HD(CY)
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Proof of Lemma 4.2. We have from (2.2.1) and (2.2.2) for any
interval U

n(U)—1
w(U)~e="%  and |U1:exp{ 5 J"[gf(ywm}

i=0
Since the measure uj is ergodic, we have the following convergence:
Log u*(U) h
Log U} [1/n(U)]1X;L0~" —J [g/(»(U))]
h
(Ul —0 J' Ju d u

(=mnlU)> +x)

Kg ae.

and we obtain therefore
Hp(Ch) =1
Using (2.4.2), (2.4.3), and (2.4.5), we have
SHa*)=a"B—F“(B)=(F*) (B) B—F“(B)

h
“[=7vau P (42)
B

Since we have from (2.4.2)
P(zy)=hys—hB— F*(B) [ J* duy=0

we get

hye h

Hy

[— T duly ™ [—J" dus

B—F“(B) (43)

Comparing (4.2) and (4.3), we obtain

h u
S a)= W (4.4)
Following refs. 14 and 15, we have
;7‘= uy _ s u =
T gagy = D) = il HD(A) ki A) = 1) (45)
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and we obtain therefore the inequality
S“(a*)= HD(C%)
The proof of the reverse inequality
S“(@")<HD(C})
parallels the proof of (3.4), and this gives lemma 4.2. ||

Let us define the measure u,=pgxu;. We have from (4.1) and
Lemma 4.2

Sla)=f“(a")+ f*(o®) = HD(ug) + HD(up) = HD(pupx uy) = HD(u,)
We have also
[Ch; ColeC,
with equal Hausdorff dimensions since f(a) = /“(a*) + f*(2*). We have then
shown Theorem 4.1 in the case a€ Ja,; a,[.

We prove now that f, f*, and f* are defined at their boundaries. Let
first study f™.

Lemma 4.3. The function f“ is defined on [a};a3]<R** and
there exist g-invariant measures p, and p, such that

af h and 4 h
= ——— oy =
1 I_Judpl 2 j‘_Judpz
h h
“lay)=¢7—5~—  and “ay) = ——2—
f l) j‘ —J dpl f 2 S —J dpz

Proof of Lemma 4.3. We have seen that there exists for any real
a€ Joy; o, a real B such that

a=(F")'(ﬂ)=J-_J—,,dﬂ,,
]

Since the function (F*“)' is strictly decreasing, we have from Theorem 2.4.2
ay=inf (F*) (B)= lim (F*) (B)
BeR B— +cx

ay=sup (F*) (B)= lim (F*)'(B)

BeR p— —o
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Let L be the set L= {u}/fe R} = M,(A). Since the functional

h

J: p --)———J. —J dp

is continuous on the compact L, it achieves its infimum and its supremum.
Let us define g-invariant measures p, (a cluster point of uj when f — + o0)
and p, (a cluster point of uj when f — —oo) which satisfy

h h
0".‘=J(Pl)=__—— and a;=J(Pz)=m

Since the functional

is upper semicontinuous, we have, using (4.2),

lim f*@)= lim [(F* (B)= lim K(u) <K(p)

1—'1| — + — ” (4.6)
lim, f*(a) = llril f"((F")’(ﬂ))=ﬁlilzl K(up) <K(p,)

Now we apply the variational principle (2.4.1) and (2.4.2) to the measures
p, and p,, and we get, for example, for large f >0

h, —hB~ F“(B) f Judp, <0

which gives with the values of af and (2.4.6)
K(p))<aiB—F“(BYS(FYY (B) B—F“(BYy=S“((F") (B))
Taking the limit when f goes to + oo, we get

Kip< lim f4(F) (B) = lim, f*a (4.7)

Comparing (4.4) and (4.7), we obtain
lim f*“(a)=f"(a})=K(p,)

el 1‘
By the same method we have for large f <0

K(p)) <oz B—F(B)<(F*Y (B) B—F“(B)=S"((F*) (B))
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which leads to the inequality

K(ﬁz)éﬂﬁf{ly SHEY) (B))= lim, f*(«)
We get therefore -
lim f“(a)=f"(a3)=K(p,)

which gives Lemma 4.3. ||

These results can be extended obviously to the function f* and, as we
shall see later, to the function f. We can find therefore g-invariant measures
&, and &, such that

S S S
I_J'_Judél a2~_[—f“déz
h he,
A I eyl A I AL R o

Let us define the measures {, =p, x ¢, and {,=p, x &,; we have from (4.1)
oy =of +af and oy =05 +ay
Sl )= fH(a) + [*(ay) = HD((,)
and
Saz) = f¥(a3) + f*(a3) = HD((,)
which gives Theorem 4.1. ||

Fig. 1. Graph of the free energy function F*, F:R—> R, 8- F'(f).
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¢.8¢

0.6”’

Fig. 2. Graph of the derivative of the free energy function F~, (FY:R— Jai; &,
B (FY (B

We have then shown that in the general case the dimensional spectrum

f(a) is defined on an interval [a;;a,] < R*" and has the typical concave
shape.

Remarks. 1. There are some remarkable values: F*(0)=1; F¥(1)=0
and f“((F")Y (0))=1; f*((F*) (0)) =8 <1 and é =1 if and only if the Gibbs

measure of J*, u,., is absolutely continuous with respect to the Lebesgue
measure. '

5 N —
. Smm— — ~+

Fig. 3. Graph of a tranform of the dimension spectrum f* H: R — Jinf(f*(a}); /*(3));
=F(0)], B B(FSY (B)—F(B)=f((F*)Y (B)).
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0.9

08 |-
0.7 |-
06
0.5
04
03
0.2
0.1 +

0
065 06 07 08 09 1 11 1.2 13 14 15

Fig. 4. Graph of the dimension spectrum f*, f* [a};a3]— [inf(f*(a];a$)); —F*(0)],
o= f5(a).

2. For any real f, the line y=fa— F“(B) is tangent to the graph
a— f(a) at the point a = (F¥)' (B).

3. The function f is degenerate if and only if the functions f* and f*
are degenerate. In this case, if f takes the value 2, then the measures u* and
©*, and consequently u, are equivalent to the Lebesgue measure.

To complete this study we give the graph of the different functions we
have found (this is just for the illustration of the general shape): the free
energy function F* (Fig. 1), the derivative F* of the free energy function
(Fig. 2), the function H which is a transform of the dimension spectrum
[see (2.4.6)] (Fig. 3), and the dimension spectrum function f* (Fig. 4).
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